Field scale experiments to assess the effects of offshore wind farms on marine organisms

Cranfield

Centre for Marine and Coastal Studies Ltd

- Andrew B Gill

 Christina Mueller-Blenkle, Peter K McGregor, Mathias H Andersson, Julian Metcalfe, Victoria Bendall, Peter Sigray, Daniel Wood, Victoria Wearmouth, Yi Huang, Joe Spencer, Ian Gloyne-Philips & Frank Thomsen

www.cranfield.ac.uk

Spatial & Temporal Factors

Wind farm locations around the UK and neighbouring areas.

Spatial & Temporal Factors

(Adrian Judd, with permission)

Environmental effects framework (from Boehlert & Gill 2010)

ElectroMagnetic Fields

 Focus - migration behaviour
 behaviour in relation to the cable(s) Fish (eels & salmonids)

Elasmobranchs (sharks, skates & rays)

Cetaceans (whales & dolphins)

Alan Charlton

Shark response to E-field

EMF emissions from AC windfarm cables

Cable x-section (internal) Magnetic field Cable x-section (external) Induced electric field

 Approximates to E field of 0.9µV/cm (50 Hz) at surface of seabed (ie. within range of detection by EM-sensitive species)

Measured E and B field of operational wind farm cable

Electric field variation moving away from feeder 1

Pile Driving Operations

 Very high sound pressures generated (260 dB re. 1 uPa @ 1m)

from Offshore Windfarm & Environment Conference 2004, Denmark

Zones of noise influence

(Thomsen et al. 2006))

COWRIE studies

- taking the lab out into the field

- Q. Do electromagnetic sensitive fish respond to EMF emitted by offshore wind farm cables?
- Q. Does pile driving affect the behaviour of marine fish
 - Mesocosm (large fish pen) based study
 - Focus on semi-realism <u>but</u> study control
 - Remote coastal site away from background EMF & noise
 - Relevant species with different attributes
 - Behavioural study with remote methods

COWRIE Mesocosm studies

Note: not to scale

Fine scale movement of ray during 3 hour event

 Benthic catshark non-random distribution more likely in cable zone when energised.

Pile driving study

- High quality recordings from real pile driving collected by Itap (2006-2008)
- Playback left or right side (gradient) 20km received sound level
- Trial 10 min playback and 10 min pre- and post playback
- Trial with tagged fish in each mesocosm, 62 trials, 50 Individuals
- Recordings of position, speed and direction of movement of fish every 45-90 secs

Movement response

• ~ 50% of cod and 30% of sole showed movement response

Swimming speed increase in sole

 $(RL = 144 - 156 \text{ dB re } 1\mu\text{Pa} \text{ Peak } 6.5 \text{ x} 10^{-3} \text{ to } 8.6 \text{ x} 10^{-4} \text{ m/s}^2 \text{ peak})$

Environmental effects framework (from Boehlert & Gill 2010)

Moving forward

 Investigating potential ecologically relevant interactions between marine organisms and offshore wind energy

Baseline understanding of the organisms of interest
Consider effects relating to different phases

- Installation
- Operation
- Decommissioning

Appropriate spatial scale

- Appropriate temporal scale
- Ecosystem level considerations
- Drivers landscape policy (eg. EIA & MSFD in EU)
- Relevance to offshore industry, regulators, other stakeholders

<u>Happy to talk further :</u> Andrew B Gill Cranfield University

email: a.b.gill@cranfield.ac.uk http://www.cranfield.ac.uk/sas/aboutus/staff/gilla.html